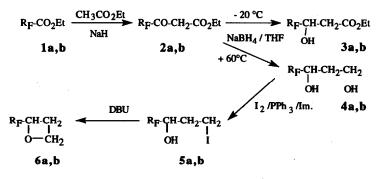
Synthesis of Oxetanes with Perfluorinated-alkyl Substituents


Marion Lanier, Raphael Pastor* and Jean G. Riess.

Laboratoire de Chimie Moléculaire, associé au CNRS, Université de Nice-Sophia Antipolis, Faculté des Sciences, 06108 Nice Cedex 2, France.

Abstract: Perfluoroalkylated oxetanes have been obtained exclusively, in 36% yield, by reduction of perfluoroalkylated β -ketoester, followed by iodination and dehydroiodination.

F-alkyl alcohols are a useful class of precursors for the synthesis of amphiphilic molecules needed as components of highly fluorinated dispersed systems such as fluorocarbon emulsions or very stable vesicles¹. During our search for convenient routes for the synthesis of such molecules we obtained a family of hitterto unknown fluorinated oxetanes.

This paper describes the controlled reduction of F-alkyl β -ketoesters to diols or β -hydroxyesters and the conversion of diols into F-alkyl oxetanes (scheme 1). Several oxetanes in which the cycle itself was totally or partially fluorinated have already been synthesized². So far no hydrogenated oxetanes bearing a F-alkyl chain in position 2 have not been reported.

Scheme 1 ($a = C_5F_{11}$, $b = C_7F_{15}$)

Ethyl 3-*F*-alkyl 3-oxo propanoates 2 are easily prepared in high yield (90%) by condensation of ethyl acetate on *F*-esters 1³. The second step is the reduction of the β -ketoesters 2. This reduction has been attempted with Ni/H₂, Ni/H₂/tartaric acid/NaBr⁴, Zn(BH4)₂⁵, NaBH4⁶. Only the last reagent gave good results. We tried

to induce stereoselectivity with NaBH₄/tartaric acid⁶ as reducing agent but the enantioselectivity was too low $(45/55)^7$ to be of interest; so NaBH₄ was used alone. At room temperature a mixture of diol 4⁸ and β -hydroxyester 3 is obtained by reduction of 2 with only 3eq. of NaBH₄ *in THF*. In these conditions, the reaction can be controlled thermally and oriented to yield only one of the two products. At 60°C, only diol 4 is obtained; at -20°C the β -hydroxyester 3 is formed exclusively.

The selective iodination of the primary alcohol achieved with PPh3/I2/Imidazol in dichloromethane, gave 5. The monoiodinated compound was obtained in good yield $(90\%)^9$ and confirmed by MS analysis. Finally, 5 was converted into the new *F*-alkyl oxetane 6^{10} by treatment with DBU (66% yield)¹¹. Various bases have been tested : KOH, K2CO3, Pyridine, N(Et)3; best results (kinetics, yields) were obtained with DBU.

Acknowledgements : We wish to thank ATOCHEM for the gift of the starting F-alkylated products.

REFERENCES

- 1. a) Riess J.G. Vox Sang. 1991, 61, 225-239. b) Riess, J.G. Biomat., Art. Cells, Immob. Biotech. 1992, 20, 183-204.
- a) Améduri B. and Boutevin B. Adv. Polymer Sc. 1992, 102, 133-169. b) Boutevin B. and Robin J.J. Adv. Polymer Sc. 1992, 102, 105-131. c) Améduri B.; Boutevin B. and Karam L. J. Fluor. Chem. 1993, to be published. d) Yohnosuke O.; Takashi T. and Shoji T. EP 0 148 482, 1984.
- a) Bayer V.; Pastor R. and Cambon A. J. Fluor. Chem. 1982, 20, 187-202. b) Tai A.; Kikukawa T.;
 Sugimura T.; Inoue Y.; Osawa T. and Fujii S. J. Chem. Soc. Chem. Commun. 1991, 795-796.
- a) Brunner H.; Muschiol M.; Wischert T. and Wiehl J. *Tetrahedron Asym.* 1990, *1*, 159-162.
 b) Gensler W.J.; Johnson F.A. and Sloan A.D.B. *J. Am. Chem. Soc.* 1960, *82*, 6074-6081.
- 5. Sarkar D.C.; Das A.R. and Ranu B.C. J. Org. Chem. 1990, 5799-5801.
- 6. Yatagai M. and Oonuki T. EP 0 320 096, 1989.
- 7. Fellous R.; Lizzani-Cuvelier L. and Loiseau A.M. J. High Res. Chromatogr. 1990, 13, 785-789.
- ¹H RMN (δppm, CD₃OD, TMS) : 1.71-2.04 (m, 2H, CH₂); 3.77/3.79/3.80/3.82 (AB syst., 2H, CH₂-O); 4.28-4.94 (massif, 1H, CH). ¹³C RMN (δppm, CD₃OD) : 32.83 (CH₂); 58.08 (CH₂-O); 67.43 (dd, ²J_{C-F}=26.7Hz, CH). ¹⁹F RMN 4a (50% yield) (δppm, CD₃OD, CFCl₃) : -80.8 (CF₃); -118.8/-120.3/-125.6/-127.1 (AB syst., CF₂α); -120.6/-122.2/-122.5/-124.1 (AB syst., CF₂b); 121.1 (CF₂γ); -125.9 (CF₂ω). 4b (59% yield): -81.0 (CF₃); -119.0/-120.5/-125.8/-127.3 (AB syst., CF₂α); -121.1/-121.6/-122.5 (4 CF₂); -126.1 (CF₂ω).
- a) Garegg P.J.; Regberg T.; Stawinski J. and Strömberg R. J. Chem. Soc. Perkin Trans II 1987, 271-274. b) Lange G.L. and Gottardo C. Synth. Comm. 1990, 20, 1473-1479.
- 10. ¹H NMR (δppm, CDCl₃, TMS) : 2.83-2.98 (m, 2H, CH₂); 4.75 (t, ³J_{H-H}=76Hz, 2H, CH₂-O); 5.07-5.26 (tt, 1H, CH) ¹³C NMR (δppm, CD₃OD) : 21.24 (CH₂); 70.85 (CH₂-O); 76.90 (t, $^{2}J_{C-F}=32Hz$, CH). ¹⁹F NMR.6 (67% yield) (δppm, CD₃OD, CFCl₃) : -81.3 (CF₃); -129.5 (CF₂ω); -123.7-122.4 (2 CF₂); -126.8 (CF₂α). **6b** (65 % yield). -81.4 (CF₃); -129.9 (CF₂ω); -123.9/-123.3/-122.7 (4 CF₂); -126.8 (CF₂α).
- 11. Antonioletti A.; Bonadies F. and Scettri A. Tetrahedron Lett. 1988, 29, 4987-4990.

(Received in France 13 May 1993; accepted 16 June 1993)